Main Article Content

Abstract

Serangan jantung merupakan salah satu penyebab kematian tertinggi di negara berkembang. Penyakit ini terjadi akibat tersumbatnya aliran darah ke otot jantung akibat penyempitan atau penyumbatan arteri koroner. Faktor risiko serangan jantung terdiri atas faktor yang dapat diubah, seperti pola hidup, dan faktor yang tidak dapat diubah, seperti usia dan riwayat keluarga. Deteksi dini terhadap risiko serangan jantung sangat penting untuk meminimalkan angka kematian. Penelitian ini bertujuan untuk membangun dan mengevaluasi model prediksi risiko serangan jantung dengan mengelompokkan pasien ke dalam dua kategori, yaitu risiko rendah dan risiko tinggi, menggunakan pendekatan rekayasa sistem cerdas berbasis supervised  learning.  Proses penelitian mencakup tahap pengumpulan data, eksplorasi data, pemilihan fitur, pra-pemrosesan data, pelatihan model, serta pengujian model untuk evaluasi performa model menggunakan metrik akurasi. Model klasifikasi dibangun dengan empat algoritma supervised learning yaitu Gradient Boosting, Random Forest, Naive Bayes, dan Logistic Regression. Pada pelatihan model digunakan 10-fold cross validation untuk melihat akurasi dan konsistensi model. Hasil pengujian menunjukkan bahwa algoritma Naive Bayes memiliki akurasi tertinggi sebesar 90%, diikuti oleh Logistic Regression dan  Random Forest (88%), dan Gradient Boosting. Model Naive Bayes tetap menunjukkan performa terbaik tidak hanya akurasi tertinggi tetapi juga nilai precision dan F1-score tertinggi untuk kelas positif, serta recall tertinggi untuk kelas negatif. Oleh karena itu, Naive Bayes dinilai sebagai model yang paling andal dan direkomendasikan untuk prediksi risiko serangan jantung secara dini, karena mampu memberikan klasifikasi yang seimbang dan akurat dalam konteks aplikasi medis.

Keywords

Serangan jantung Gradient Boosting Logistic Regression Naive Bayes Random Forest

Article Details

How to Cite
Riminarsih, D., & Nugraha, A. . (2025). Evaluasi Performa Algoritma Supervised Learning untuk Prediksi Risiko Serangan Jantung: Pendekatan Rekayasa Sistem Cerdas . Jurnal Profesi Insinyur Universitas Lampung, 6(1). https://doi.org/10.23960/jpi.v6n1.169

References

  1. Anand, S. S., Islam, S., Rosengren, A., Franzosi, M. G., Steyn, K., Yusufali, A. H., Yusuf, S. (2008). Risk factors for myocardial infarction in women and men: Insights from the INTERHEART study. *European Heart Journal, 29*(7), 932–940. https://doi.org/10.1093/eurheartj/ehn018
  2. Breiman, L. (2001). Random forests. *Machine Learning, 45*(1), 5–32. https://doi.org/10.1023/A:1010933404324
  3. Cox, D. R. (1958). The regression analysis of binary sequences. *Journal of the Royal Statistical Society: Series B (Methodological), 20*(2), 215–242. https://www.jstor.org/stable/2983890
  4. Dharmawan, S., Fernandes, V., & Halim, H. (2024). Prediksi serangan jantung dengan menggunakan metode logistic regression classifier dan Adaboost. *Computatio: Journal of Computer Science and Information Systems, 8*(1). https://doi.org/10.24912/computatio.v8i1.15176
  5. Ekananda, N. P., & Riminarsih, D. (2022). Identifikasi penyakit pneumonia berdasarkan citra chest X-ray menggunakan convolutional neural network. *Jurnal Ilmiah Informatika Komputer, 27*(1), 79–94. https://doi.org/10.35760/ik.2022.v27i1.6487
  6. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. *Annals of Statistics, 29*(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
  7. Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). *Applied logistic regression* (3rd ed.). Wiley.
  8. Kathiresan, S., & Srivastava, D. (2012). Genetics of human cardiovascular disease. *Cell, 148*(6), 1242–1257. https://doi.org/10.1016/j.cell.2012.03.001
  9. McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., ... Kathiresan, S. (2007). A common allele on chromosome 9 associated with coronary heart disease. *Science, 316*(5830), 1488–1491. https://doi.org/10.1126/science.1142447
  10. Nugraha, W. (2021). Prediksi penyakit jantung cardiovascular menggunakan model algoritma klasifikasi. *JURNAL SIGMATA, 9*(2), 78–84.
  11. Nygård, O., Nordrehaug, J. E., Refsum, H., Ueland, P. M., Farstad, M., & Vollset, S. E. (1997). Plasma homocysteine levels and mortality in patients with coronary artery disease. *New England Journal of Medicine, 337*(4), 230–236. https://doi.org/10.1056/NEJM199707243370403
  12. Ojha, N., & Dhamoon, A. S. (2023, August 8). Myocardial infarction. In *StatPearls [Internet]*. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK537076/
  13. Oskar, F. R., Rupina, & P., N. (2024). Pengelolaan data penyakit jantung dengan menggunakan metode Naive Bayes. *Infact: International Journal of Computers, 8*(02), 49–54. https://doi.org/10.61179/jurnalinfact.v8i02.531
  14. Prihandoko, A., Fahrurozi, A., Riminarsih, D., & Jayanti, K. (2024). Effective feature selection methods for vaginal birth after cesarean data. In *2024 Ninth International Conference on Informatics and Computing (ICIC)* (pp. 1–5). IEEE. https://doi.org/10.1109/ICIC64337.2024.10956317
  15. Riminarsih, D., Karyati, C. M., Mutiara, A. B., Wahyudi, B., & Ernastuti. (2016). MRI sagittal image segmentation from patients with abdominal aortic aneurysms. *TELKOMNIKA (Telecommunication Computing Electronics and Control), 14*(3), 1105–1112. https://doi.org/10.12928/telkomnika.v14i3.3520
  16. Rokom. (2022, September 29). Penyakit jantung penyebab utama kematian, Kemenkes perkuat layanan primer. *Kementerian Kesehatan Republik Indonesia.* https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20220929/0541166/penyakit-jantung-penyebab-utama-kematian-kemenkes-perkuat-layanan-primer/
  17. Suryana, D. H., Mutiara, A. B., Raharja, W. K., & Riminarsih, D. (2024). Hair removal methods in skin cancer images using Black Top Hat transform and wavelet transform. In *2024 Ninth International Conference on Informatics and Computing (ICIC)* (pp. 1–6). IEEE. https://doi.org/10.1109/ICIC64337.2024.10957513
  18. WHO. (n.d.). *Cardiovascular diseases.* https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
  19. Yusuf, S., Hawken, S., Ôunpuu, S., Dans, T., Avezum, A., Lanas, F., ... INTERHEART Study Investigators. (2004). Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. *The Lancet, 364*(9438), 937–952. https://doi.org/10.1016/S0140-6736(04)17018-9
  20. Zhang, H. (2004). The optimality of naive Bayes. In *Proceedings of the 17th International Florida Artificial Intelligence Research Society Conference* (pp. 562–567).