Main Article Content

Abstract





Abstrak. Pengujian kualitas jaringan WiFi merupakan aspek penting dalam memastikan konektivitas yang stabil dan aman. Namun, alat uji profesional umumnya mahal, tidak portabel, dan memerlukan perangkat tambahan. Oleh karena itu, penelitian ini merancang dan mengembangkan alat uji jaringan WiFi portabel berbasis mikrokontroler WeMos D1 Mini ESP-12F dan layar OLED 0.96 inci. Alat ini mampu mendeteksi parameter jaringan secara real-time seperti SSID, RSSI, channel, dan jenis enkripsi tanpa memerlukan komputer tambahan. Metode penelitian meliputi studi literatur, perancangan sistem perangkat keras dan lunak, serta pengujian lapangan pada lima lokasi berbeda. Hasil pengukuran dibandingkan dengan aplikasi WiFi Analyzer dan studi sebelumnya sebagai acuan validasi. Perangkat menunjukkan deviasi RSSI rata-rata ±5,14 dBm dan mampu beroperasi selama ±3,5 jam dengan baterai 18650. Dibandingkan dengan penelitian terdahulu, alat ini lebih unggul dalam jumlah parameter yang ditampilkan dan efisiensi penggunaan di lapangan. Penelitian ini menyimpulkan bahwa perangkat yang dirancang merupakan solusi efektif, ekonomis, dan portabel untuk kebutuhan pemantauan jaringan WiFi pada skala kecil hingga menengah, baik dalam konteks edukasi maupun teknis






Abstract. WiFi network quality testing is crucial to ensure stable and secure connectivity. However, professional testing tools are often expensive, non-portable, and require additional devices. This study aims to design and develop a portable WiFi testing device based on the WeMos D1 Mini ESP-12F microcontroller and a 0.96-inch OLED display. The device is capable of detecting key network parameters in real-time, including SSID, RSSI, channel, and encryption type, without relying on a computer. The research method includes literature review, hardware and software system design, and field testing at five different locations. Measurement results were compared with the WiFi Analyzer mobile application and previous research as validation references. The device showed an average RSSI deviation of ±5,14 dBm and operated for approximately 3,5 hours using a 18650 battery. Compared to previous studies, this device offers advantages in terms of the number of parameters displayed and field usability. The study concludes that the developed device provides an effective, affordable, and portable solution for small to medium-scale WiFi network monitoring, applicable in both educational and technical settings.


 





Keywords

WiFi RSSI ESP8266

Article Details

How to Cite
Kusuma Maghfiroh, D. A. R. (2025). Analisis Perancangan Dan Implementasi Perangkat Uji Sinyal Wifi Portabel Berbasis Mikrokontroler Wemos D1 Mini. Jurnal Profesi Insinyur Universitas Lampung, 6(2). https://doi.org/10.23960/jpi.v6n2.180

References

  1. R. S. Rosli, M. H. Habaebi, and P. M. R. Islam, “On the analysis of received signal strength indicator from ESP8266,” Bull. Electr. Eng. Informatics, vol. 8, no. 3, pp. 933–940, 2019, doi: 10.11591/eei.v8i3.1511.
  2. Z. Ma, B. Wu, and S. Poslad, “A WiFi RSSI ranking fingerprint positioning system and its application to indoor activities of daily living recognition,” Int. J. Distrib. Sens. Networks, vol. 15, no. 4, 2019, doi: 10.1177/1550147719837916.
  3. R. N. Mubaroq and N. S. Aminah, “Sistem Monitoring Konversi Wifi-RSSI Menjadi Jarak Antar Device dan Router Menggunakan Node-Red Pada Pengembangan Sistem Navigasi Dalam Ruang,” Proc. Ser. Phys. Form. Sci., vol. 1, pp. 32–37, 2021, doi: 10.30595/pspfs.v1i.130.
  4. M. W. P. Maduranga, V. Tilwari, and R. Abeysekera, “Improved-RSSI-based indoor localization by using pseudo-linear solution with machine learning algorithms,” J. Electr. Syst. Inf. Technol., vol. 11, no. 1, 2024, doi: 10.1186/s43067-024-00138-0.
  5. F. Alamta, H. Aspriyono, ) ; Eko, and P. Rohmawan, “Wifi Network Security Analysis Using Scanning Signal Method In Excellent School Pearl Of The Mother Of Bengkulu City Analisis Keamanan Jaringan Wifi Menggunakan Metode Signal Scanning Di Sekolah Luar Biasa Mutiara Bunda Kota Bengkulu,” J. Komput., vol. 1, no. 1, pp. 1–6, 2022.
  6. E. Eben, M. Mukramin, and H. Abduh, “Pengembangan Manajemen Keamanan Jaringan Nirkabel (Wifi) Menggunakan Routerboard Mikrotik Dan Firewall Pada Smk Kristen Palopo,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4716.
  7. J. Zheng, Y. Liu, X. Fan, and F. Li, “The Study of RSSI in Wireless Sensor Networks,” vol. 133, no. 2, pp. 207–209, 2016, doi: 10.2991/aiie-16.2016.48.
  8. H. Ouldzira, A. Mouhsen, H. Lagraini, M. Chhiba, A. Tabyaoui, and S. Amrane, “Remote monitoring of an object using a wireless sensor network based on NODEMCU ESP8266,” Indones. J. Electr. Eng. Comput. Sci., vol. 16, no. 3, pp. 1154–1162, 2019, doi: 10.11591/ijeecs.v16.i3.pp1154-1162.
  9. S. Fuada, T. Adiono, and L. Siregar, “Development of wireless control system for smart street lighting using ESP8266,” Int. J. Interact. Mob. Technol., vol. 14, no. 15, pp. 68–80, 2020, doi: 10.3991/IJIM.V14I15.14081.
  10. M. F. Wicaksono and M. D. Rahmatya, “IoT for Residential Monitoring Using ESP8266 and ESP-NOW Protocol,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 8, no. 1, p. 93, 2022, doi: 10.26555/jiteki.v8i1.23616.
  11. D. Cama-Pinto, J. A. Holgado-Terriza, M. Damas-Hermoso, F. Gómez-Mula, and A. Cama-Pinto, “Radiowave attenuation measurement system based on rssi for precision agriculture: Application to tomato greenhouses,” Inventions, vol. 6, no. 4, pp. 1–13, 2021, doi: 10.3390/inventions6040066.
  12. J. Qi and G. P. Liu, “Design and implementation of an indoor localization system based on wireless sensor networks and ultrasonic,” Kongzhi yu Juece/Control Decis., vol. 33, no. 8, pp. 1391–1398, 2018, doi: 10.13195/j.kzyjc.2017.0514.
  13. Ö. Şeker, B. Şahin, T. Akdoğan, and G. Dalkılıç, “Physical Tracking of ESP32 IoT Devices with RSSI Based Indoor Position Calculation,” J. Millimeterwave Commun. Optim. Model., vol. 4, no. January 2023, pp. 13–16, 2024.
  14. N. Embong, N. Abdullah, and Z. Ambak, “Multi-node distance measurement using LoRa technology : a study on the relationship between RSSI and range,” vol. 5, no. 2, pp. 41–45, 2024.
  15. R. E. Daulay, “Rancang Bangun Smart Home System Menggunakan NodeMCU Esp8266 Berbasis Komunikasi Telegram Messenger,” J. Pendidik. Sains dan Komput., vol. 2, no. 02, pp. 357–360, 2022, doi: 10.47709/jpsk.v2i02.1747.
  16. D. J. Suroso, A. B. Krisnawan, R. Rupaksi, and S. Hawibowo, “Free 3D Indoor Localization in Multi-Story,” pp. 93–103, 2022.
  17. M. U. Ali, S. Hur, and Y. Park, “Wi-Fi-based effortless indoor positioning system using IoT sensors,” Sensors (Switzerland), vol. 19, no. 7, 2019, doi: 10.3390/s19071496.
  18. H. Fitriawan, D. Despa, and I. Kustiani, “Potensi Internet of Things (IoT) dan Ragam Sensor untuk Layanan Kesehatan,” J. Profesi Ins. Univ. Lampung, vol. 1, no. 1, pp. 1–4, 2020, doi: 10.23960/jpi.v1n1.10.