Main Article Content

Abstract

Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem pertahanan aktif menggunakan teknologi Honeypot dan Network Obfuscation. Honeypot digunakan untuk menjebak serta memonitor aktivitas penyerang, sementara Network Obfuscation menyamarkan struktur jaringan asli dan mengarahkan lalu lintas mencurigakan ke sistem honeypot. Penelitian dilakukan secara nyata pada server DATANET. Hasil pengujian menunjukkan sistem berhasil mendeteksi serta mengalihkan serangan tanpa mengganggu layanan utama.

Keywords

keamanan jaringan honeypot network obfuscation pertahanan aktif

Article Details

How to Cite
zain, S. (2025). Penerapan Honeypot Dan Network Obfuscation Sebagai Sistem Pertahanan Aktif Dalam Keamanan Jaringan. Jurnal Profesi Insinyur Universitas Lampung, 6(2). https://doi.org/10.23960/jpi.v6n2.222

References

  1. A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and C. Benzaïd, “A comprehensive survey on cyber deception techniques to improve honeypot performance,” Comput. Secur., vol. 140, p. 103792, May 2024, doi: 10.1016/j.cose.2024.103792.
  2. “ADAPTIVE HONEYPOT SYSTEM WITH BEHAVIOUR ANALYSIS FOR WEBSECURITY,” IJARCCE, vol. 13, no. 11, Dec. 2024, doi: 10.17148/IJARCCE.2024.131128.
  3. M. Alyami, C. Zou, and Y. Solihin, “Adaptive Segmentation: A Tradeoff Between Packet-Size Obfuscation and Performance,” in 2024 International Conference on Smart Applications, Communications and Networking (SmartNets), Harrisonburg, VA, USA: IEEE, May 2024, pp. 1–4. doi: 10.1109/SmartNets61466.2024.10577699.
  4. Z. Morić, V. Dakić, and D. Regvart, “Advancing Cybersecurity with Honeypots and Deception Strategies,” Informatics, vol. 12, no. 1, p. 14, Jan. 2025, doi: 10.3390/informatics12010014.
  5. M. Xu et al., “AHAC: Advanced Network-Hiding Access Control Framework,” Appl. Sci., vol. 14, no. 13, p. 5593, June 2024, doi: 10.3390/app14135593.
  6. A. Ebunoluwa, “AI-Powered Honeypots: Enhancing Deception Technologies for Cyber Defense”.
  7. D. Fraunholz, M. Zimmermann, and H. D. Schotten, “An adaptive honeypot configuration, deployment and maintenance strategy,” in 2017 19th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Kwangwoon Do, South Korea: IEEE, 2017, pp. 53–57. doi: 10.23919/ICACT.2017.7890056.
  8. D. Zielinski and H. A. Kholidy, “An Analysis of Honeypots and their Impact as a Cyber Deception Tactic”.
  9. A. H. Simanjuntak, L. Nurpulaela, B. Sulistyo, R. A. Faizal, and H. M. Louhanapessy, “Pengujian Kualitas Layanan Internet Seluler Berbasis QoS Studi Kasus di Karawang,” J. Profesi Ins. Univ. Lampung, vol. 6, no. 1, June 2025, doi: 10.23960/jpi.v6n1.156.
  10. P. Aggarwal, Y. Du, K. Singh, and C. Gonzalez, “Decoys in Cybersecurity: An Exploratory Study to Test the Effectiveness of 2-sided Deception,” Aug. 25, 2021, arXiv: arXiv:2108.11037. doi: 10.48550/arXiv.2108.11037.
  11. D. R. Rodrıguez, S. R. Sala, I. C. Gimenez, and T. R. Catala, “Enhancing Cybersecurity Intelligence through Machine Learning: Clustering and Forecasting Analysis of Honeypot Data”.
  12. Seetharam Kakaraparthi, Durganjaneyulu Immadisetty, and Maranco M, “Enhanced honeypot security for intrusion detection and prevention systems using blockchain,” World J. Adv. Res. Rev., vol. 22, no. 1, pp. 751–758, Apr. 2024, doi: 10.30574/wjarr.2024.22.1.1065.
  13. Addis Ababa Science and Technology University/Computer Engineering, Addis Ababa, 1000, Ethiopia and Y. T. Abewa, “Dynamic Interactive Honeypot for Web Application Security,” Int. J. Wirel. Microw. Technol., vol. 14, no. 6, pp. 1–14, Dec. 2024, doi: 10.5815/ijwmt.2024.06.01.
  14. A. Shaffer, D. Hembree, and G. Singh, “Obfuscation, Stealth, and Non-Attribution in Automated Red Team Tools,” Int. Conf. Cyber Warf. Secur., vol. 20, no. 1, pp. 132–141, Mar. 2025, doi: 10.34190/iccws.20.1.3290.
  15. W. Fan, Z. Du, M. Smith-Creasey, and D. Fernandez, “HoneyDOC: An Efficient Honeypot Architecture Enabling All-Round Design,” IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 683–697, Mar. 2019, doi: 10.1109/JSAC.2019.2894307.